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We note that the thermodynamically more stable g-isomer (2b)5 is Pormed stereoselectively 

from 3-pentanone (2a) and that the addition of 1 eq hexamethylphosphoramide (HMPA) marginally 

improves the Z:E isomer ratio to 97:3. 'Phis indicates that equilibration between enolate and 

ketone is relatively faster than trapping with TBDMS chloride, and that HMPA enhances the 

rate of equilibration more than the rate of trapping. Support for this conclusion comes fian 

the highly regioselective conversion of 2-methylcyclohexanone (6a) into the "thermodynamicn 

tetrasubstituted silyl enol ether (6b) when HMPA is included in the reaction mixture. In the 

absence of HMPA, the trisubstituted silyl enol ether is predominantly Pormed with (6b) in a 

56:44 ratio. 

It is notable that the high regioselectivity Por the "thermodynamic" silyl enol ether 

(6b) is equivalent to that seen for making its TMS analogue frota (6a) using bromcmagnesium 

diisopropylamide and TMS chloride. which is the most regioselective method known Por making 

flthermodynamicn TMS enol ethers. 6 Our method for making TBDMS enol ethers has, however, 

additional and important features: it also works well with ketones which are prone to self 

(aldol) condensation e.g. (la) and (4a)7 or to degradation e.g. (7a) and (8a) in the presente 

of base, or are difficult to enolize and derivatize e.g. (+)-camphor (5a). 8 Furthermore, the 

selectivity Por nthermodynamicn TBDMS en01 ethers is effectively complementary to that of a 

new procedure Por making "kinetic" TMS enol ethers using lithium dialkylamides in the 

presente of TMS chloride.' 

Thus, it appears that the present method is unique in its high regio- and stereo- 

selectivity, simplicity, and mildness for making TBDMS enol ethers. These attributes are 

Pacilitating an on-going study of TBDMS enol ether reactivity towards electrophiles that vil1 

be reported in due course. 

GENERAL PROCEDURE. 

Potassium hydride (40 mmol) was added under a stream of nitrogen to a dry THF (40 ml) 

solution of ketone (10 mmol) and TBDMS chloride (13 mtnol) at -78O (see Table for variants 

with HMPA). The stirred mixture was warmed slowly to 25O and the reaction monitored by tic. 

When no ketone remained [<1.5 h; (5a) 18 h; (6a)+HMPA, 2 h with Purther 1.3 eq TBDMS chloride 

after 1 h] the reaction mixture was filtered through a column of Florisil (25 mm x 100 mm) 

into a dry base-washed flask, and concentrated to give the TBDMS enol ether. 
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